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Abstract

Background—Vaginal SHIVSF162P3 acquisition in pigtail macaques (Macaca nemestrina) is 

dependent on time point during the menstrual cycle. Susceptibility is higher around menstruation 

and lower at ovulation in mid cycle. This complicates design of repeat low-dose (RLD) SHIV 

exposure studies because virus challenges given during low susceptibility periods have lower 

chances to infect. To account for fluctuating susceptibility, we analyzed menstrual cycles rather 

than exposures until infection following virus challenges.

Findings—We first re-analyzed infection data of 41 macaques receiving placebo or no treatment 

during once (n=18) or twice (n=23) weekly virus exposures. The same number of cycles was 

required for infection with either challenge frequency, while it took a median 4 or 6 challenges for 

once or twice weekly exposures, respectively. More virus challenges to infection likely reflect 

frequent unsuccessful exposures in frequently exposed animals. When re-analyzing two previously 

reported biomedical HIV intervention studies, we found 1% Tenofovir gel was 74 or 86 % 

efficacious based on cycles or exposures (p = 0.019 or = 0.003, respectively, Fisher’s exact test), 

while 1% Raltegravir gel was 84 or 89 % efficacious, respectively (p = 0.047 or = 0.031).

Conclusions—Evaluating number of menstrual cycles rather than exposures until infection can 

account for varying susceptibility during the menstrual cycle. Our observations have implications 

for future study designs such as planning frequency of virus exposures. Menstrual cycle analysis 

may also avoid potential over-estimation of efficacy against vaginal challenges during low 

susceptibility periods in the cycle that are unlikely to cause infection.

Keywords

Macaca nemestrina; Repeat Low Dose Model; SHIV; Menstrual Cycle; HIV Prevention

The repeat low- dose (RLD) virus exposure model has been developed to test HIV 

prevention strategies in macaques 1, 2. This experimental approach models physiologic 

sexual HIV exposures which often do not cause infection after a single exposure 3. Unlike 
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the conventional single-high dose model, it allows experimental detection of efficacious 

HIV preventions when high doses may overwhelm the interventions. This model also 

enables use of small macaque groups by evaluating outcomes of each repeated virus 

exposure 4-6, assuming that each virus exposure can lead to infection.

For experiments with vaginal RLD SHIV exposures 2, 7, our group uses pigtail macaques 

(Macaca nemestrina) because they can easily be vaginally infected, have stable year-round 

median 32 -day menstrual cycles 8, 9, and are of favorable size for gynecological exams 10. 

However, their susceptibility to vaginal SHIV infection fluctuates during the menstrual 

cycle, peaking one week prior to and one week after onset of menstruation 9, 11. This 

complicates the analysis of the number of exposures required for infection, as repeated 

exposures during the cycle thus have unequal chances to infect and depend on exposure 

initiation time within the cycle. As an alternative, we have refined the RLD model for 

evaluating biomedical intervention studies, by reporting the number of menstrual cycles 

required for infection 12-15. To accomplish this, we have since so far used calendar months, 

28-day time segments, or actual menstrual cycle analysis with differing cycle lengths for 

each animal 12-15, and have attempted to initiate virus exposures at select menstrual cycle 

phases 14. We here report our experiences, and provide an in-depth description of our 

analysis methods.

To illustrate effects of two different analysis methods, we provide a side-by-side comparison 

of the number of exposures until infection occurred and of cycles to infection. In Fig. 1, we 

plotted Kaplan-Meier infection survival curves of 41 SHIVSF162P3-infected female control 

animals. Adult female pigtail macaques were infected at CDC according to humane care 

guidelines 16 and with IACUC (Institutional Animal Care and Use Committee) approval. 

They were control- or placebo-treated animals from various prevention trials 2, 7, 12, 13, 17 

with different study designs; their menstrual cycle determination, infection and susceptibility 

during the cycle has been reported 9, 11 and tabulated11 . Macaques received one (n=18) or 

two (n=23) low-dose SHIVSF162P3 exposures 18 (10-50 TCID50) per week for up to 14-20 

exposures, in accordance with their original study designs 2, 7, 12, 13, 17. Exposures started 

randomly within the menstrual cycle, continued throughout menstruation, and were stopped 

when animals became SHIV-positive. The infecting virus exposure was identified as the 

challenge given seven days prior to SHIV detection of at least 50 copies/mL. To determine 

the number of menstrual cycles required for infection, we applied 28-day periods from the 

start of challenges, regardless of actual cycle data. Logistical hurdles prevented the 

implementation of 32- day periods because resulting eight-day intervals between virus 

challenges meant animal procedures would fall on different week days each week, 

conflicting with operational procedures in our animal facility. Alternatively, if challenges 

occurred on the same weekday each week, some 32-day periods would have 4, others 5 virus 

exposures, complicating comparisons of infections during menstrual cycles. For one 

exposure per week and using 28-day periods, SHIV infection in the first, second, third and 

fourth cycle meant macaques received 1-4, 5-8, 9-12, 13-16 exposures before their first 

positive viral load, respectively. Uninfected animals were evaluated at completed cycles, 

even if further exposures happened in additional, but incomplete cycles. For example, a 

macaque remaining uninfected after 14 weekly challenges completed three cycles but not 
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four, and received two superfluous challenges that were not evaluated. For two exposures 

per week, infection in first, second, or third cycle meant macaques received 1-8, 9-16, or 

17-24 exposures before their first positive viral load, respectively. Kaplan-Meier survival 

graphs were constructed and analyzed with GraphPad Prism5.03 (San Diego, CA), also used 

for Fisher’s exact, two-tailed outcome comparisons.

When we separately analyzed macaques receiving one or two challenges per week, we 

found four and six median numbers of exposures were required for infection, respectively 

(Fig. 1A). This difference was not statistically different (log-rank test, p=0.19). Infection 

rates (infections/ number of exposures) were also not significantly affected by challenge 

frequency (p=0.271, Fisher’s exact test). Three macaques remained uninfected after 14 

exposures. Although the difference in challenges required for infection was not statistically 

significant for the two challenge frequencies, the observation is consistent with expectations 

due to varying susceptibility during the cycle. If a portion of animals started challenges in a 

low susceptibility period, more unsuccessful exposures will happen in twice-weekly exposed 

animals compared to once-weekly exposed animals until a high susceptibility period is 

reached.

The survival curves for menstrual cycle analysis for macaques receiving one or two 

challenges per week were strikingly similar for the two frequencies (Fig. 1B; log-rank test, 

p=0.51). One median cycle was required for infection, regardless of exposure frequency. 

Thirty-nine percent of the macaques remained uninfected after the first menstrual cycle of 

challenges for each frequency. These findings indicate that exposing animals twice per week 

is not advantageous over once per week. This new observation has implications for future 

study designs with reduced virus challenge frequency, potentially improving animal health 

due to reduced anesthesia frequency and lowering virus needs and animal technician time.

We next conducted a re-analysis of two previously published HIV intervention studies 15, 19, 

and provide a side-by-side evaluation of the number of exposures until infection occurred 

(Fig. 2, left panels), compared to the published evaluation using cycles to infection (Fig. 2, 

right panels). Only partially efficacious interventions were re-analyzed, because the 

completely protective interventions we have reported 7, 12, 13 are fully efficacious, regardless 

of the analysis method. The first intervention included a 1% Tenofovir (TFV) gel modality 

in which six macaques received vaginal gel and were challenged with virus 30 minutes and 

72 hours later 19, and compared to ten placebo-treated animals. A second intervention had 

one percent Raltegravir (RAL) gel given three hours after SHIV exposure as post-exposure 

prophylaxis 15 (6 experimental and 4 placebo-treated macaques). Efficacy of preventing 

infection was calculated as Efficacy (%) = 1 - (Pi/Pc) with P (infection rate; i=intervention, 

c=control) = number of infections/ number of challenges or cycles.

For the first intervention study evaluating efficacy of 1% TFV gel to prevent vaginal 

SHIVSF162P3 infection 19, analysis of exposures to infection showed 86% efficacy (Fig. 1A, 

left panel, p=0.003, Fisher’s exact test) compared to 74% efficacy (Fig. 1A, right panel, 

p=0.019) when efficacy measurements were analyzed by number of exposures or cycles to 

infection, respectively. Likewise, for 1% RAL gel 15, efficacy was calculated at 89% or 84% 

(Fig. 1B, p=0.031 or p=0.047, respectively, by Fisher’s exact test). Thus, the two 
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interventions found partially efficacious with cycle analysis were also partially efficacious 

using exposure number as the analysis method. In both examples, menstrual cycle analysis 

yielded a slightly lower efficacy value. However, this observation could not be supported by 

statistical comparisons, as only two example trial results were available. Larger sample sizes 

and additional statistical analyses might be able to ascertain this observation with statistical 

significance if and when more trial results become available. It is possible – but not proven 

by our observations - that analysis by exposure number may overestimate efficacy, 

potentially because unsuccessful virus challenges during low susceptibility periods 

contribute to efficacy calculations. This is particularly true for protected animals who 

survive many challenges uninfected, while most control animals become infected as soon as 

a high susceptibility period is reached. Therefore, low susceptibility periods may affect 

efficacy calculations for intervention animals more than control animals when analyses are 

based on exposure numbers.

Choice of analysis method by number of cycles or exposures likely matters most when 

experimental groups are comprised of animals that are not distributed equally in all possible 

parts of their cycles at study start, i.e., have some degree of synchronicity. Then it is possible 

that animals of one group but not the other start exposures in low susceptibility periods. It is 

difficult to distribute animals equally into study groups according to cycle status. 

Progesterone data are easiest to interpret in retrospect when longitudinal trajectories are 

available, i.e., not at study start. We have also encountered individual animals with 

consistent cycling patterns until experimentation started, only to find that the stresses of 

increased animal handling and fasting for anesthesia unpredictably affected cycles. We 

therefore suggest it is prudent to choose analysis by assessing menstrual cycles post hoc 

rather than anticipating menstrual cycles before study start.

Menstrual cycle analysis solves the problem of lacking cycle synchronicity at study start, but 

it does not eliminate the problem that animals may be cycling irregularly, and are unequally 

distributed in study groups. For example, if in a study comparing interventions, animals in 

one group are regularly cycling but in the other group animals are not cycling or have 

irregular cycles, their proportions of time in periods of high susceptibility will vary and 

affect interpretation of intervention efficacy. However, this biological issue of differing 

susceptibility confounds both analysis types, and is not solved by switching analysis 

method.

When we implemented these methods a few issues arose regarding experimental design. We 

have since chosen to use 28-day increments rather than actual, measured cycle lengths as 

previously explored 14. This had resulted in varying number of virus challenges per cycle 

due to short or long cycles. Not relying on actual cycle length determination also avoids 

lengthy cycle monitoring before study start to determine day 1 of each cycle, and exclusion 

of animals with incomplete cycle information, saving time and allowing all challenge data to 

be used. We prefer to use 28-day analysis units over the median 32 days of pigtail cycles 8, 9 

to allow convenient once-weekly exposures on the same week day in each unit, as is 

desirable for workflow in our animal facility. We acknowledge the effect of the four-day 

difference from median 32-day cycle length has not yet been fully analyzed. For animals 

remaining uninfected or protected from infection, we have started to only analyze completed 
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28-day units, because partial cycles may have started during low susceptibility periods 

without substantial chance of infection. Thus, we now usually plan experiments in multiples 

of 28-day intervals, i.e., 4, 8, 12, 16, or 20 exposures once per week. For example, the 

uninfected macaque after 14 weekly challenges shown in Fig. 1 received two superfluous 

challenges that were not evaluated because the fourth cycle was incomplete. Also, exposure 

interruptions are difficult to interpret with both analysis methods, as animals may miss 

susceptible periods. For example, one previously evaluated macaque (macaque 303, 11) was 

not included in Fig. 1 because virus challenges were interrupted for three weeks due to a 

holiday. If unavoidable, a full 28-day interruption can be considered, regardless of analysis 

method.

A study limitation was that we did not evaluate further reduction of virus challenge 

frequency beyond once per week. In addition, exploring implications for statistical power of 

RLD studies will be helpful, as will statistical simulations of cycle synchronicity in animal 

groups of different sizes. This was not the focus of this report on our practical experiences 

with RLD studies.

Alternatives to menstrual cycle analysis are to synchronize macaques before study start, e.g., 

with birth control pills as we have previously done 20, or to start virus challenges at the same 

cycle time point in each animal, also previously reported 14. These methods are laborious 

and time intensive, susceptible to erroneous menstrual cycle judgment and to unpredictable 

cycling changes during experimentation.
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Figure 1. Comparison of analysis methods for data from 41 untreated or Placebo-treated control 
macaques
Forty-one pigtail macaques were repeatedly exposed to intra-vaginal SHIVSF162P3 with 

random start time relative to their menstrual cycle (previously summarized 11). A. Kaplan-

Meier survival graph displays the percentage of macaques remaining uninfected after the 

indicated exposures to infection. Three animals remained uninfected after 14 exposures, as 

indicated by asterisks. One animal was in the group receiving one exposure per week, the 

other two were in the group receiving two exposures per week. B. Kaplan-Meier survival 

graph displays the percentage of macaques that remained uninfected throughout menstrual 

cycles with virus exposures. Menstrual cycle here is defined as a 28-day interval.
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Figure 2. Comparison of analysis methods for intervention data
The graphs show Kaplan-Meier survival graphs to plot the percentage of pigtail macaques 

remaining uninfected after number of vaginal SHIVSF162P3 challenges received (left panels) 

or after number of menstrual cycles with virus challenges (right panels). A. Data are from a 

pre-exposure prophylaxis (PrEP) trial using 1% Tenofovir gel 19. B. Data are from a post-

exposure prophylaxis (PEP) trial with Raltegravir gel 15. P values are calculated by Fisher’s 

exact test.
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